Scientists map the wiring of the biological clock

Read More

From the WUSTL Newsroom…

The World Health Organization lists shift work as a potential carcinogen, says Erik Herzog, PhD, Professor of Biology in Arts & Sciences at Washington University in St. Louis. And that’s just one example among many of the troubles we cause ourselves when we override the biological clocks in our brains and pay attention instead to the mechanical clocks on our wrists.

In the June 5 issue of Neuron, Herzog and his colleagues report the discovery of a crucial part of the biological clock: the wiring that sets its accuracy to within a few minutes out of the 1440 minutes per day. This wiring uses the neurotransmitter, GABA, to connect the individual cells of the biological clock in a fast network that changes strength with time of day.

Daily rhythms of sleep and metabolism are driven by a biological clock in the suprachiasmatic nucleus (SCN), a structure in the brain made up of 20,000 neurons, all of which can keep daily (circadian) time individually.

If the SCN is to be a robust, but sensitive, timing system, the neurons must synchronize precisely with one another and adjust their rhythms to those of the environment.

Herzog’s lab has discovered a push-pull system in the SCN that does both. In 2005 they reported that the neurons in the clock network communicate by means of a neuropeptide (VIP) that pushes them to synchronize with one another.

And, as they now report in Neuron, these neurons also communicate with GABA that pulls on them weakly, so they are not too tightly coupled.

Together these two networks (VIP and GABA) ensure the clock runs as coordinated, precise timepiece but one that can still adjust its timing to synchronize with the environment.

“We think the neurotransmitter network is there to introduce enough jitter into the system to allow the neurons to resynchronize when environmental cues change, as they do with the seasons,” Herzog says.

But, he says, since this biological ‘reset button’ evolved long before mechanical clocks, artificial lights, and high-speed travel, it doesn’t introduce enough jitter to allow us to adjust quickly to the extreme time shifts of modern life, such as flying “backward” (east) through several time zones.

Understanding the push-pull system in the SCN has enormous implications for public health, bearing, as it does, on daylight saving times, shift work, school starting times, medical intern schedules, truck driver hours, and many other issues where the clock in the brain is pitted against the clock in the hand.

For the complete story, click here.

EmailPrintShare
Posted on June 11, 2013
Posted in: Neurogenetics, News Authors: