Green fluorescence protein driven by the Na,K-ATPase α4 isoform promoter is expressed only in male germ cells of mouse testis

McDermott JP, Sanchez G, Chennathukuzhi V, Blanco G; J Assist Reprod Genet. 2012 Dec;29(12):1313-25. doi: 10.1007/s10815-012-9876-x. Epub 2012 Nov 16. Read More

Abstract

Abstract
PURPOSE: Expression of the Na,K-ATPase α4 isoform is required for sperm motility and fertility and is controlled by the Atp1a4 promoter. Here, we have investigated the specific tissue, cell type and developmental regulation of expression mediated by the Atp1a4 promoter.

METHODS: We have inserted the green fluorescent protein (GFP), downstream of the endogenous Atp1a4 promoter, in place of the Na,K-ATPase α4 gene, and used it as a marker for α4 expression in mice (Atp1a4 ( null(GFP) ) mice).

RESULTS: Replacement of α4 by GFP completely disrupted α4 expression and activity, produced sperm morphological and functional abnormalities, and caused infertility of Atp1a4 ( null(GFP) ) male mice. Immunoblot analysis of Atp1a4 ( null(GFP) ) mouse tissues showed GFP expression in testis. This particular expression pattern was found in adult, but not in mouse embryos or in 7, 18 day old mice. In agreement with expression of GFP, adult Atp1a4 ( null(GFP) ) mouse testis displayed the typical fluorescence of GFP. Immunocytochemistry of testis identified GFP in more differentiated male germ cells, but not in spermatogonia, Leydig or Sertoli cells. Further analysis, using immunoblot of fluorescently sorted testis cells with cell specific markers, detected GFP only in spermatocytes, spermatids and spermatozoa. While epididymis showed GFP expression, this was confined to the spermatozoa within the epididymal tubules.

CONCLUSIONS: Our results show that the Atp1a4 promoter drives GFP expression exclusively in male germ cells of the testis, where it restricts it to post-meiotic stages of spermatogenesis. These findings highlight the exquisite spatial and temporal control of expression exerted by the Atp1a4 promoter on Na,K-ATPase α4, which is particularly well suited to fulfill the special functions of spermatozoa.

Full Text

.

EmailPrintShare
Posted on September 17, 2013
Posted in: Publications, Transgenic Vectors