Cruchaga and Goate identify rare gene variants that double risk for Alzheimer’s disease

Read More

From the WUSTL Newsroom…

A team led by researchers at Washington University School of Medicine in St. Louis has identified variations in a gene that doubles a person’s risk of developing Alzheimer’s disease later in life.

The research is published online Dec. 11 in the journal Nature.

Over the past two decades, scientists have discovered a number of common genetic variants linked to early-onset (which strikes before age 65) and the more common late-onset forms of Alzheimer’s disease. But those variants account for only a fraction of Alzheimer’s cases.

The newly identified variations, found in a gene never before linked to Alzheimer’s, occur rarely in the population, making them hard for researchers to identify. But they’re important because individuals who carry these variants are at substantially increased risk of the disease.

As part of the new research, the investigators focused on families with several members who had Alzheimer’s.

As a practical matter, finding mutations linked to Alzheimer’s disease means it may be possible to identify more people at risk years before they develop any symptoms. These patients could be monitored carefully for early signs of Alzheimer’s and possibly even get treatments to slow the progression of the disease.

“We were very excited to be able to identify a gene that contains some of these rare variants,” said lead author Carlos Cruchaga, PhD. “And we were surprised to find that the effect of the gene was so large. After adjusting for other factors that can influence risk for the disease, we found that people with certain gene variants were twice as likely as those who didn’t have the variants to develop Alzheimer’s.”

As in many genetic studies of Alzheimer’s, Cruchaga and his co-investigators analyzed DNA from people in families in which multiple members were affected by the disease.

For the complete article, click here.

EmailPrintShare
Posted on December 13, 2013
Posted in: Axon Injury & Repair, HPAN, Neurodegeneration, Neurogenetics, News Authors: , , , ,