Wolfram syndrome 1 gene negatively regulates ER stress signaling in rodent and human cells

Fonseca, S.G., Ishigaki, S., Oslowski, C.M, Lu, S., Lipson, K.L., Ghosh, R., Hayashi, E., Ishihara, H., Oka, Y., Permutt, M.A., and Urano, F.; Journal of Clinical Invesigation, 120(3): 744-55, 2010. Read More

Abstract

Wolfram syndrome is an autosomal-recessive disorder characterized by insulin-dependent diabetes mellitus, caused by nonautoimmune loss of β cells, and neurological dysfunctions. We have previously shown that mutations in the Wolfram syndrome 1 (WFS1) gene cause Wolfram syndrome and that WFS1 has a protective function against ER stress. However, it remained to be determined how WFS1 mitigates ER stress. Here we have shown in rodent and human cell lines that WFS1 negatively regulates a key transcription factor involved in ER stress signaling, activating transcription factor 6α (ATF6α), through the ubiquitin-proteasome pathway. WFS1 suppressed expression of ATF6α target genes and repressed ATF6α-mediated activation of the ER stress response element (ERSE) promoter. Moreover, WFS1 stabilized the E3 ubiquitin ligase HRD1, brought ATF6α to the proteasome, and enhanced its ubiquitination and proteasome-mediated degradation, leading to suppression of ER stress signaling. Consistent with these data, β cells from WFS1-deficient mice and lymphocytes from patients with Wolfram syndrome exhibited dysregulated ER stress signaling through upregulation of ATF6α and downregulation of HRD1. These results reveal a role for WFS1 in the negative regulation of ER stress signaling and in the pathogenesis of diseases involving chronic, unresolvable ER stress, such as pancreatic β cell death in diabetes.

Full Text

.

EmailPrintShare
Posted on February 11, 2014
Posted in: HPAN, Neurodegeneration, Publications Authors: