Mice with genetic defect for human stuttering offer new insight into speech disorder

Read More

From the WUSTL Newsroom…

Mice that vocalize in a repetitive, halting pattern similar to human stuttering may provide insight into a condition that has perplexed scientists for centuries, according to a new study by researchers at Washington University School of Medicine in St. Louis and the National Institutes of Health (NIH).

The researchers created mice with a mutation in a gene associated with stuttering in humans and found that they vocalized in an abnormal pattern reminiscent of human stuttering. The animal model of stuttering can help scientists understand the molecular and neurological basis of the disorder, and potentially develop treatments.

The research is published online April 14 in Current Biology.

Once thought to be caused by nervousness, stress or even bad parenting, stuttering is now recognized as primarily biological in origin, although anxiety can exacerbate the condition.

Some people who stutter have a mutation in a gene called Gnptab (for N-acetylglucosamine-1-phosphate transferase alpha and beta). With Dennis Drayna, PhD, and colleagues at the National Institute on Deafness and Other Communication Disorders, the researchers created mice with a corresponding mutation in the same gene and studied their vocalizations for evidence of abnormalities similar to human stuttering.

“Speech is obviously a unique human capacity, but the patterns of speech are built out of a lot of building blocks that are much simpler,” said Tim Holy, PhD, an associate professor of neuroscience and the paper’s senior author.  “You have to be able to control the timing of your breath and the fine muscles in your tongue and mouth. You have to be able to initiate movement. Those kinds of things may be shared all the way from mice to people.”

Mice make complex sounds all the time, at pitches too high for the human ear to detect.

For the complete article, click here.

Posted on April 18, 2016
Posted in: Lysosome, News Authors: