Possible strategy identified for Charcot-Marie-Tooth disease, other disorders

Read More

From the WUSTL Newsroom…

Charcot-Marie-Tooth disease is an inherited disorder that leads to a gradual loss of motor neurons and, eventually, paralysis. The condition is caused by genetic mutations that disrupts cells’ energy factories, called mitochondria. No drugs are available to slow or stop the progression of the disease, which affects nearly 3 million people worldwide.

However, in research slated for fast-track advance online publication Oct. 24 in Nature, scientists at Washington University School of Medicine in St. Louis and Stanford University report that they have designed small compounds that have the potential to correct the mitochondrial dysfunction that leads to Charcot-Marie-Tooth and other conditions involving mitochondria. The team designed the compounds after its work in mouse cells revealed a new understanding of the 3-D structure of a key protein that is disabled in the mitochondria of patients with the disease.

“This mitochondrial protein has never been targeted before,” said senior author Gerald W. Dorn II, MD, the Philip and Sima K. Needleman Professor of Medicine. “There are no drugs that work on this protein that is so important for mitochondrial function. We designed two compounds — one that activates and one that inhibits the function of this protein. We are working on testing them in mice with mitochondrial defects.”

For the complete article, click here.

Posted on October 27, 2016
Posted in: HPAN, Neurodegeneration, Neurogenetics, Neurogenetics & Transcriptomics, News Authors: ,