Antisense oligonucleotides extend survival and reverse decrement in muscle response in ALS models

Alex McCampbell, … and Timothy M. Miller. Journal of Clinical Investigation, Volume 128, Issue 8, 1 August 2018, Pages 3558-3567 Read More

Abstract

Mutations in superoxide dismutase 1 (SOD1) are responsible for 20% of familial ALS. Given the gain of toxic function in this dominantly inherited disease, lowering SOD1 mRNA and protein is predicted to provide therapeutic benefit. An early generation antisense oligonucleotide (ASO) targeting SOD1 was identified and tested in a phase I human clinical trial, based on modest protection in animal models of SOD1 ALS. Although the clinical trial provided encouraging safety data, the drug was not advanced because there was progress in designing other, more potent ASOs for CNS application. We have developed nextgeneration SOD1 ASOs that more potently reduce SOD1 mRNA and protein and extend survival by more than 50 days in SOD1G93A rats and by almost 40 days in SOD1G93A mice. We demonstrated that the initial loss of compound muscle action potential in SOD1G93A mice is reversed after a single dose of SOD1 ASO. Furthermore, increases in serum phospho-neurofilament heavy chain levels, a promising biomarker for ALS, are stopped by SOD1 ASO therapy. These results define a highly potent, new SOD1 ASO ready for human clinical trial and suggest that at least some components of muscle response can be reversed by therapy. © 2018 American Society for Clinical Investigation. All rights reserved.

Full Text

.

Posted on August 21, 2018
Posted in: Clocks & Sleep, HPAN, Neurodegeneration, NeuroRestorative Therapy, Publications Authors: