Implantable, biodegradable devices speed nerve regeneration in rats

Pulses of electrical stimulation help heal injured nerves Read More

From the WashU Newsroom

Car accidents, sports injuries, even too much typing and texting can injure the peripheral nerves, leaving people with numbness, tingling and weakness in their hands, arms or legs. Recovery can take months, and doctors have little to offer to speed it along.

Now, researchers at Washington University School of Medicine in St. Louis and Northwestern University have developed an implantable, biodegradable device that delivers regular pulses of electricity to damaged peripheral nerves in rats, helping the animals regrow nerves in their legs and recover their nerve function and muscle strength more quickly. The size of a quarter, the device lasts about two weeks before being completely absorbed into the body.

The findings are published Oct. 8 in Nature Medicine.

For most people with peripheral nerve injuries, doctors suggest painkillers such as aspirin and physical therapy. Severe cases may require surgery, and standard practice is to administer some electrical stimulation to the injured nerves during the surgery to aid recovery.

“We know that electrical stimulation during surgery helps, but once the surgery is over, the window for intervening is closed,” said co-senior author Wilson “Zack” Ray, MD, an associate professor of neurosurgery, of biomedical engineering and of orthopedic surgery at Washington University. “With this device, we’ve shown that electrical stimulation given on a scheduled basis can further enhance nerve recovery.”

Unlike neurons in the brain and spinal cord, the peripheral nerves that run through the arms, legs and torso can regenerate after injury. Electrical stimulation triggers the release of growth-promoting proteins, boosting nerve cells’ natural abilities and helping them regrow faster and more completely.

But until now, doctors have lacked a means to continuously provide that added boost.

Visit the Source for the complete story.

Posted on October 8, 2018
Posted in: Axon Injury & Repair, NeuroRestorative Therapy, News Authors: