MAGP-1 and fibronectin control EGFL7 functions by driving its deposition into distinct endothelial extracellular matrix locations

Gaëlle Villain, Etienne Lelievre, Tom Broekelmann, Odile Gayet, Chantal Havet, Elisabeth Werkmeister, Robert Mecham, Nelson Dusetti, Fabrice Soncin, Virginie Mattot. FEBS Journal 2018 Read More

Abstract

The extracellular matrix (ECM) is essential to provide mechanical support to tissues but is also a bioactive edifice which controls cell behavior. Cell signaling generated by ECM components through integrin-mediated contacts, modulates cell biological activity. In addition, by sequestrating or releasing growth factors, the ECM is an active player of physiological and pathological processes such as vascular development. EGFL7 is mainly expressed during blood vessel development and is deposited in the ECM after secretion by endothelial cells. While EGFL7 is known to control various endothelial cell molecular mechanisms [i.e., the repression of endothelial-derived lysyl oxidase (LOX) enzyme, the regulation of the Notch pathway, and the expression of leukocyte adhesion molecules and of RHOA by endothelial cells], it is not established whether EGFL7 functions when bound to the ECM. Here, we show that microfibrillar-associated glycoprotein-1 (MAGP-1) and fibronectin drive the deposition of EGFL7 into both fibers and individual aggregates in endothelial ECM. Although EGFL7 does not need to be docked into the ECM to control endothelial adhesion molecule expression, the ECM accumulation of EGFL7 is required for its regulation of LOX activity and of HEY2 expression along the Notch pathway. The interaction of EGFL7 with MAGP-1 is necessary for LOX activity repression by EGFL7 while it does not participate in the control of the Notch pathway by this protein. Altogether, this study highlights the roles played by EGFL7 in controlling various endothelial molecular mechanisms upon its localization and shows how the ECM can modulate its functions. © 2018 Federation of European Biochemical Societies

Full Text

.

Posted on November 12, 2018
Posted in: Neurovascular Injury & Repair, Publications Authors: