Cavitation dose painting for focused ultrasound-induced blood-brain barrier disruption

Yaoheng Yang, Xiaohui Zhang, Dezhuang Ye, Richard Laforest, Jeffrey Williamson, Yongjian Liu & Hong Chen. Scientific Reports, Volume 9, Issue 1, 1 December 2019, Article number 2840 Read More

Abstract

Focused ultrasound combined with microbubble for blood-brain barrier disruption (FUS-BBBD) is a promising technique for noninvasive and localized brain drug delivery. This study demonstrates that passive cavitation imaging (PCI) is capable of predicting the location and concentration of nanoclusters delivered by FUS-BBBD. During FUS-BBBD treatment of mice, the acoustic emissions from FUS-activated microbubbles were passively detected by an ultrasound imaging system and processed offline using a frequency-domain PCI algorithm. After the FUS treatment, radiolabeled gold nanoclusters, 64 Cu-AuNCs, were intravenously injected into the mice and imaged by positron emission tomography/computed tomography (PET/CT). The centers of the stable cavitation dose (SCD) maps obtained by PCI and the corresponding centers of the 64 Cu-AuNCs concentration maps obtained by PET coincided within 0.3 ± 0.4 mm and 1.6 ± 1.1 mm in the transverse and axial directions of the FUS beam, respectively. The SCD maps were found to be linearly correlated with the 64 Cu-AuNCs concentration maps on a pixel-by-pixel level. These findings suggest that SCD maps can spatially “paint” the delivered nanocluster concentration, a technique that we named as cavitation dose painting. This PCI-based cavitation dose painting technique in combination with FUS-BBBD opens new horizons in spatially targeted and modulated brain drug delivery. © 2019, The Author(s).

Full Text

.

Posted on March 13, 2019
Posted in: Neurogenetics & Transcriptomics, NeuroRestorative Therapy, Neurovascular Injury & Repair, Publications Authors: