Protein linked to Alzheimer’s, strokes cleared from brain blood vessels

In mice, antibody removes amyloid, improves vessel function without raising risk of brain bleeds Read More

From the WashU School of Medicine News

As people age, a normal brain protein known as amyloid beta often starts to collect into harmful amyloid plaques in the brain. Such plaques can be the first step on the path to Alzheimer’s dementia. When they form around blood vessels in the brain, a condition known as cerebral amyloid angiopathy, the plaques also raise the risk of strokes.

Several antibodies that target amyloid plaques have been studied as experimental treatments for Alzheimer’s disease. Such antibodies also may have the potential to treat cerebral amyloid angiopathy, although they haven’t yet been evaluated in clinical trials. But all of the anti-amyloid antibodies that have successfully reduced amyloid plaques in Alzheimer’s clinical trials also can cause a worrisome side effect: an increased risk of brain swelling and bleeds.

Now, researchers at Washington University School of Medicine in St. Louis have identified an antibody that, in mice, removes amyloid plaques from brain tissue and blood vessels without increasing risk of brain bleeds. The antibody targets a minor component of amyloid plaques known as apolipoprotein E (APOE).

The findings, published Feb. 17 in Science Translational Medicine, suggest a potentially safer approach to removing harmful amyloid plaques as a way of treating Alzheimer’s disease and cerebral amyloid angiopathy.

“Alzheimer’s researchers have been searching for decades for therapies that reduce amyloid in the brain, and now that we have some promising candidates, we find that there’s this complication,” said senior author David Holtzman, MD, the Andrew B. and Gretchen P. Jones Professor and head of the Department of Neurology. “Each of the antibodies that removes amyloid plaques in clinical trials is a little different, but they all have this problem, to a greater or lesser degree. We’ve taken a different approach by targeting APOE, and it seems to be effective at removing amyloid from both the brain tissue and the blood vessels, while avoiding this potentially dangerous side effect.”

The side effect, called ARIA, for amyloid-related imaging abnormalities, is visible on brain scans. Such abnormalities indicate swelling or bleeding in the brain caused by inflammation and can lead to headaches, confusion and even seizures. In clinical trials for anti-amyloid antibodies, roughly 20% of participants develop ARIA, although not all have symptoms.

Anti-amyloid antibodies work by alerting the immune system to the presence of unwanted material — amyloid plaques — and directing the cleanup crew — inflammatory cells known as microglia — to clear out such debris. ARIA seems to be the result of an overenthusiastic inflammatory response. Holtzman and first author Monica Xiong, a graduate student, suspected that an antibody that targets only a minor part of the amyloid plaque might elicit a more restrained response that clears the plaques from both brain tissue and blood vessels without causing ARIA.

Fortunately, they had one such antibody on hand: an antibody called HAE-4 that targets a specific form of human APOE that is found sparsely in amyloid plaques and triggers the removal of plaques from brain tissue. To determine whether HAE-4 also removes amyloid from brain blood vessels, the researchers used mice genetically modified with human genes for amyloid and APOE4, a form of APOE associated with a high risk of developing Alzheimer’s and cerebral amyloid angiopathy. Such mice develop abundant amyloid plaques in brain tissue and brain blood vessels by the time they are about six months old. Along with Holtzman and Xiong, the research team included co-authors Hong Jiang, PhD, a senior scientist in Holtzman’s lab; and Gregory J. Zipfel, MD, the Ralph G. Dacey Distinguished Professor of Neurological Surgery and head of the Department of Neurosurgery, among others.

Visit the News Hub for the complete story.

Posted on February 18, 2021
Posted in: Clocks & Sleep, HPAN, Neurodegeneration, Neurogenetics & Transcriptomics, Neurovascular Injury & Repair, News Authors: ,