Blockade of TREM-2 exacerbates experimental autoimmune encephalomyelitis

Piccio L, Buonsanti C, Mariani M, Cella M, Gilfillan S, Cross AH, Colonna M, Panina-Bordignon P (2007). Eur J Immunol, 37(5):1290-301. PMID: 17407101 Read More

Abstract

Triggering receptor expressed on myeloid cells (TREM-2) is a membrane receptor associated with DAP12 that is expressed primarily in myeloid cells, including dendritic cells and microglia, and promotes fusion of osteoclast precursors into multinucleated cells. A rare autosomal recessive condition, Nasu-Hakola disease (NHD) is associated with loss-of-function mutations in DAP12 and TREM-2. The brain pathology observed in NHD patients suggests that disruption of the TREM-2/DAP12 pathway leads to neurodegeneration with demyelination and axonal loss. In this study, we have characterized TREM-2 protein expression on microglia using a newly produced monoclonal antibody directed against the mouse TREM-2 receptor. We report that TREM-2 expression is up-regulated in the spinal cord during both the early inflammatory and chronic phases of myelin oligodendrocyte glycoprotein (MOG)(35-55)peptide-induced experimental autoimmune encaphalomyelitis (EAE). We also demonstrate that TREM-2 is highly expressed on microglial cells in the central nervous system (CNS) during EAE and that blockade of TREM-2 during the effector phase of EAE results in disease exacerbation with more diffuse CNS inflammatory infiltrates and demyelination in the brain parenchyma. These results demonstrate a critical role for TREM-2 during inflammatory responses in the CNS.

Full Text

 

EmailPrintShare
Posted on October 5, 2007
Posted in: Axon Injury & Repair, Publications, Therapeutics & Diagnostics Authors: ,