Cross talk between synaptic receptors mediates NMDA-induced suppression of inhibition

Chisari M, Zorumski CF, Mennerick S (2012). J Neurophysiol, 107(9):2532-40 Read More


Past research has shown that calcium influx through NMDA receptors (NMDARs) depresses GABA(A) currents. We examined upstream triggers of this suppression, including involvement of target synaptic GABA(A) receptors and the NMDARs triggering suppression. In hippocampal neurons, conditioning with 20 μM NMDA for 20 s caused 50% suppression of GABA responses. The suppression was delayed by ≈ 60 s following NMDA application and persisted for at least 5 min following conditioning. Pharmacology experiments suggested a shift in both the sensitivity to GABA and a loss of functional receptors. NMDA conditioning strongly suppressed inhibitory postsynaptic currents and speeded decay kinetics. Synaptic NMDAR conditioning was necessary to suppress GABA current in pyramidal neurons; extrasynaptic NMDAR activation did not suppress, even when matched to synaptic activation. We found no evidence that specific synaptic NMDAR subunits mediate depression of GABA responses. Although physical colocalization of glutamate and GABA(A) receptors is mostly likely in extrasynaptic regions, our evidence suggests that NMDAR-induced suppression of GABA responsiveness prominently affects precise, moment-to-moment signaling from synaptic receptors to synaptic receptors.

Full Text


Posted on July 6, 2012
Posted in: HPAN, Neurodegeneration, Publications Authors: ,