Characterization of neural bridge circuits for spinal cord repair

2014 Pilot Project Read More

Investigators

Principal Investigator: Shelly Sakiyama-Elbert, PhD (formerly WashU Biomedical Engineering)
Collaborator: Dennis Barbour, MD, PhD (WashU Biomedical Engineering)

Description

Embryonic stem (ES) cell transplantation holds great promise as a potential strategy for repairfollowing spinal cord injury (SCI). Recently, we developed methods for generating populations ofpurified, genetically defined ventral spinal neurons through genetic engineering and antibiotic selection;however, the functional phenotypes of these purified ES-derived neurons and their appropriateness fortransplantation have yet to be characterized. In order to devise effective circuits to bridge a SCI lesion,the network properties of ES-derived spinal neurons must be determined.

Our objective is to understand how neural circuits form in the spinal cord and how they can be rewired to promote functional recovery after spinal cord injury.  We will use a novel approach to probe what types of neurons are involved in these circuits and what kinds of cues can support their formation.  Specifically, we will use multi-electrode arrays to characterize the interactions between V2a interneurons and motor neurons as model circuits for driving rhythmic locomotor function.  This work will combine engineering, neuroscience and developmental biology approaches.  The information gained from this research can be used to guide the design of potential cell transplantation therapies with human induced pluripotent stem cells (iPSCs) for spinal cord injury.

Funded Grants

MO Spinal Cord Injury Research Program

Updated June 2017

Hope Center Investigators

Pilot project teams include Hope Center faculty members and others. For more about Hope Center faculty on this team, click below.

Shelly Sakiyama-Elbert

Support

This pilot project is made possible by the Danforth Foundation Challenge.

Danforth Challenge