Publications

Hope Center Member Publications: April 7, 2024

Multiomics analysis to explore blood metabolite biomarkers in an Alzheimer’s Disease Neuroimaging Initiative cohort” (2024) Scientific Reports

Multiomics analysis to explore blood metabolite biomarkers in an Alzheimer’s Disease Neuroimaging Initiative cohort
(2024) Scientific Reports, 14 (1), art. no. 6797, . 

Oka, T.a , Matsuzawa, Y.a , Tsuneyoshi, M.b , Nakamura, Y.b , Aoshima, K.c d , Tsugawa, H.a e f g , Weiner, M.h , Aisen, P.i , Petersen, R.j , Jack, C.R., Jr.j , Jagust, W.k , Trojanowki, J.Q.l , Toga, A.W.m , Beckett, L.n , Green, R.C.o p , Saykin, A.J.q , Morris, J.r , Shaw, L.M.s , Liu, E.t , Montine, T.u , Thomas, R.G.i , Donohue, M.i , Walter, S.i , Gessert, D.i , Sather, T.i , Jiminez, G.i , Harvey, D.n , Donohue, M.i , Bernstein, M.j , Fox, N.v , Thompson, P.w , Schuff, N.x , DeCArli, C.n , Borowski, B.j , Gunter, J.j , Senjem, M.j , Vemuri, P.j , Jones, D.j , Kantarci, K.j , Ward, C.j , Koeppe, R.A.y , Foster, N.z , Reiman, E.M.aa , Chen, K.aa , Mathis, C.ab , Landau, S.k , Cairns, N.J.r , Householder, E.r , Reinwald, L.T.r , Lee, V.ac , Korecka, M.ac , Figurski, M.ac , Crawford, K.m , Neu, S.m , Foroud, T.M.q , Potkin, S.ad , Shen, L.q , Kelley, F.q , Kim, S.q , Nho, K.q , Kachaturian, Z.ae , Frank, R.af , Snyder, P.J.ag , Molchan, S.ah ai , Kaye, J.aj , Quinn, J.aj , Lind, B.aj , Carter, R.aj , Dolen, S.aj , Schneider, L.S.ak , Pawluczyk, S.ak , Beccera, M.ak , Teodoro, L.ak , Spann, B.M.ak , Brewer, J.al , Vanderswag, H.al , Fleisher, A.al , Heidebrink, J.L.y , Lord, J.L.y , Petersen, R.j , Mason, S.S.j , Albers, C.S.j , Knopman, D.j , Johnson, K.j , Doody, R.S.am , Meyer, J.V.am , Chowdhury, M.am , Rountree, S.am , Dang, M.am , Stern, Y.an , Honig, L.S.an , Bell, K.L.an , Ances, B.ao , Morris, J.C.ao , Carroll, M.ao , Leon, S.ao , Householder, E.ao , Mintun, M.A.ao , Schneider, S.ao , Oliver, A.ao , Marson, D.ap , Griffith, R.ap , Clark, D.ap , Geldmacher, D.ap , Brockington, J.ap , Roberson, E.ap , Grossman, H.aq , Mitsis, E.aq , de Toledo-Morrell, L.ar , Shah, R.C.ar , Duara, R.as , Varon, D.as , Greig, M.T.as , Roberts, P.as , Albert, M.at , Onyike, C.at , D’Agostino, D.at , Kielb, S.at , Galvin, J.E.au , Pogorelec, D.M.au , Cerbone, B.au , Michel, C.A.au , Rusinek, H.au , de Leon, M.J.au , Glodzik, L.au , De Santi, S.au , Doraiswamy, P.M.av , Petrella, J.R.av , Wong, T.Z.av , Arnold, S.E.s , Karlawish, J.H.s , Wolk, D.s , Smith, C.D.aw , Jicha, G.aw , Hardy, P.aw , Sinha, P.aw , Oates, E.aw , Conrad, G.aw , Lopez, O.L.aw , Oakley, M.ab , Simpson, D.M.ab , Porsteinsson, A.P.ax , Goldstein, B.S.ax , Martin, K.ax , Makino, K.M.ax , Ismail, M.S.ax , Brand, C.ax , Mulnard, R.A.ay , Thai, G.ay , Mc Adams Ortiz, C.ay , Womack, K.az , Mathews, D.az , Quiceno, M.az , Arrastia, R.D.az , King, R.az , Weiner, M.az , Cook, K.M.az , DeVous, M.az , Levey, A.I.ba , Lah, J.J.ba , Cellar, J.S.ba , Burns, J.M.bb , Anderson, H.S.bb , Swerdlow, R.H.bb , Apostolova, L.bc , Tingus, K.bc , Woo, E.bc , Silverman, D.H.S.bc , Lu, P.H.bc , Bartzokis, G.bc , Graff Radford, N.R.bd , Parfitt, F.bd , Kendall, T.bd , Johnson, H.bd , Farlow, M.R.q , Hake, A.M.q , Matthews, B.R.q , Herring, S.q , Hunt, C.q , van Dyck, C.H.be , Carson, R.E.be , MacAvoy, M.G.be , Chertkow, H.bf , Bergman, H.bf , Hosein, C.bf , Black, S.bg , Stefanovic, B.bg , Caldwell, C.bg , Hsiung, G.Y.R.bh , Feldman, H.bh , Mudge, B.bh , Assaly, M.bh , Kertesz, A.bi , Rogers, J.bi , Trost, D.bi , Bernick, C.bj , Munic, D.bj , Kerwin, D.bk , Mesulam, M.M.bk , Lipowski, K.bk , Wu, C.K.bk , Johnson, N.bk , Sadowsky, C.bl , Martinez, W.bl , Villena, T.bl , Turner, R.S.bm , Johnson, K.bm , Reynolds, B.bm , Sperling, R.A.o , Johnson, K.A.o , Marshall, G.o , Frey, M.o , Yesavage, J.bn , Taylor, J.L.bn , Lane, B.bn , Rosen, A.bn , Tinklenberg, J.bn , Sabbagh, M.N.bo , Belden, C.M.bo , Jacobson, S.A.bo , Sirrel, S.A.bo , Kowall, N.bp , Killiany, R.bp , Budson, A.E.bp , Norbash, A.bp , Johnson, P.L.bp , Obisesan, T.O.bq , Wolday, S.bq , Allard, J.bq , Lerner, A.br , Ogrocki, P.br , Hudson, L.br , Fletcher, E.bs , Carmichael, O.bs , Olichney, J.bs , DeCarli, C.bs , Kittur, S.bt , Borrie, M.bu , Lee, T.Y.bu , Bartha, R.bu , Johnson, S.bv , Asthana, S.bv , Carlsson, C.M.bv , Potkin, S.G.bw , Preda, A.bw , Nguyen, D.bw , Tariot, P.aa , Fleisher, A.aa , Reeder, S.aa , Bates, V.bx , Capote, H.bx , Rainka, M.bx , Scharre, D.W.by , Kataki, M.by , Adeli, A.by , Zimmerman, E.A.bz , Celmins, D.bz , Brown, A.D.bz , Pearlson, G.D.ca , Blank, K.ca , Anderson, K.ca , Santulli, R.B.cb , Kitzmiller, T.J.cb , Schwartz, E.S.cb , Sink, K.M.cc , Williamson, J.D.cc , Garg, P.cc , Watkins, F.cc , Ott, B.R.cd , Querfurth, H.cd , Tremont, G.cd , Salloway, S.ce , Malloy, P.ce , Correia, S.ce , Rosen, H.J.h , Miller, B.L.h , Mintzer, J.cf , Spicer, K.cf , Bachman, D.cf , Finger, E.cg , Pasternak, S.cg , Rachinsky, I.cg , Rogers, J.cg , Kertesz, A.cg , Drost, D.cg , Pomara, N.ch , Hernando, R.ch , Sarrael, A.ch , Schultz, S.K.ci , Ponto, L.L.B.ci , Shim, H.ci , Smith, K.E.ci , Relkin, N.cj , Chaing, G.cj , Raudin, L.cj , Smith, A.ck , Fargher, K.ck , Raj, B.A.ck

a Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
b Human Biology Integration Foundation, Eisai Co., Ltd., Ibaraki, Japan
c Microbes & amp; Host Defense Domain, Eisai Co., Ltd., Ibaraki, Japan
d School of Integrative and Global Majors, University of Tsukuba, Ibaraki, Japan
e RIKEN Center for Sustainable Resource Science, Yokohama, Japan
f RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
g Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
h UC San Francisco, San Francisco, United States
i UC San Diego, San Diego, United States
j Mayo Clinic, Rochester, United States
k UC Berkeley, Berkeley, United States
l U Pennsylvania, Philadelphia, United States
m USC, Los Angeles, United States
n UC Davis, Davis, United States
o Brigham and Women’s Hospital, Boston, United States
p Harvard Medical School, Cambridge, United States
q Indiana University, Bloomington, United States
r Washington University St. Louis, St. Louis, United States
s University of Pennsylvania, Philadelphia, United States
t Janssen Alzheimer Immunotherapy, South San Francisco, United States
u University of Washington, Seattle, United States
v University of London, London, United Kingdom
w USC School of Medicine, Greenville, United States
x UCSF MRI, San Francisco, United States
y University of Michigan, Ann Arbor, United States
z University of Utah, Salt Lake City, United States
aa Banner Alzheimer’s Institute, Phoenix, United States
ab University of Pittsburgh, Pittsburgh, United States
ac UPenn School of Medicine, Philadelphia, United States
ad UC Irvine, Irvine, United States
ae Khachaturian, Radebaugh & amp; Associates, Inc and Alzheimer’s Association’s Ronald and Nancy Reagan’s Research Institute, Chicago, United States
af General Electric, Boston, United States
ag Brown University, Providence, United States
ah National Institute on Aging, Bethesda, United States
ai National Institutes of Health, Bethesda, United States
aj Oregon Health and Science University, Portland, United States
ak University of Southern California, Los Angeles, United States
al University of California San Diego, La Jolla, United States
am Baylor College of Medicine, Houston, United States
an Columbia University Medical Center, New York, United States
ao Washington University, St. Louis, United States
ap University of Alabama Birmingham, Birmingham, United States
aq Mount Sinai School of Medicine, New York, United States
ar Rush University Medical Center, Chicago, United States
as Wien Center, Vienna, Austria
at Johns Hopkins University, Baltimore, United States
au New York University, New York, United States
av Duke University Medical Center, Durham, United States
aw University of Kentucky, Lexington, United States
ax University of Rochester Medical Center, New York, United States
ay University of California, Irvine, United States
az University of Texas Southwestern Medical School, Dallas, United States
ba Emory University, Atlanta, United States
bb University of Kansas, Medical Center, Lawrence, United States
bc University of California, Los Angeles, Los Angeles, United States
bd Mayo Clinic, Jacksonville, United States
be Yale University School of Medicine, New Haven, United States
bf McGill Univ., Montreal Jewish General Hospital, Montreal, Canada
bg Sunnybrook Health Sciences, Toronto, ON, Canada
bh U.B.C. Clinic for AD & amp; Related Disorders, Vancouver, Canada
bi Cognitive Neurology St. Joseph’s, London, ON, United States
bj Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, United States
bk Northwestern University, Evanston, United States
bl Premiere Research Inst (Palm Beach Neurology), West Palm Beach, United States
bm Georgetown University Medical Center, Washington, United States
bn Stanford University, Stanford, United States
bo Banner Sun Health Research Institute, Sun City, United States
bp Boston University, Boston, United States
bq Howard University, Washington, United States
br Case Western Reserve University, Cleveland, United States
bs University of California, Davis Sacramento, Davis, United States
bt Neurological Care of CNY, Syracuse, United States
bu Parkwood Hospital, London, Canada
bv University of Wisconsin, Madison, United States
bw University of California, Irvine BIC, Irvine, United States
bx Dent Neurologic Institute, Amherst, United States
by Ohio State University, Columbus, United States
bz Albany Medical College, Albany, United States
ca Hartford Hosp, Olin Neuropsychiatry Research Center, Hartford, United States
cb Dartmouth Hitchcock Medical Center, Lebanon, United States
cc Wake Forest University Health Sciences, Winston-Salem, United States
cd Rhode Island Hospital, Providence, United States
ce Butler Hospital, Providence, United States
cf Medical University South Carolina, Charleston, United States
cg St. Joseph’s Health Care, London, Canada
ch Nathan Kline Institute, Orangeburg, United States
ci University of Iowa College of Medicine, Iowa City, United States
cj Cornell University, Ithaca, United States
ck University of South Florida: USF Health Byrd Alzheimer’s Institute, Tampa, United States

Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease that commonly causes dementia. Identifying biomarkers for the early detection of AD is an emerging need, as brain dysfunction begins two decades before the onset of clinical symptoms. To this end, we reanalyzed untargeted metabolomic mass spectrometry data from 905 patients enrolled in the AD Neuroimaging Initiative (ADNI) cohort using MS-DIAL, with 1,304,633 spectra of 39,108 unique biomolecules. Metabolic profiles of 93 hydrophilic metabolites were determined. Additionally, we integrated targeted lipidomic data (4873 samples from 1524 patients) to explore candidate biomarkers for predicting progressive mild cognitive impairment (pMCI) in patients diagnosed with AD within two years using the baseline metabolome. Patients with lower ergothioneine levels had a 12% higher rate of AD progression with the significance of P = 0.012 (Wald test). Furthermore, an increase in ganglioside (GM3) and decrease in plasmalogen lipids, many of which are associated with apolipoprotein E polymorphism, were confirmed in AD patients, and the higher levels of lysophosphatidylcholine (18:1) and GM3 d18:1/20:0 showed 19% and 17% higher rates of AD progression, respectively (Wald test: P = 3.9 × 10–8 and 4.3 × 10–7). Palmitoleamide, oleamide, diacylglycerols, and ether lipids were also identified as significantly altered metabolites at baseline in patients with pMCI. The integrated analysis of metabolites and genomics data showed that combining information on metabolites and genotypes enhances the predictive performance of AD progression, suggesting that metabolomics is essential to complement genomic data. In conclusion, the reanalysis of multiomics data provides new insights to detect early development of AD pathology and to partially understand metabolic changes in age-related onset of AD. © The Author(s) 2024.

Document Type: Article
Publication Stage: Final
Source: Scopus

VCP Inhibition Augments NLRP3 Inflammasome Activation” (2024) Inflammation

VCP Inhibition Augments NLRP3 Inflammasome Activation
(2024) Inflammation, . 

Sharma, A., Dhavale, D.D., Kotzbauer, P.T., Weihl, C.C.

Department of Neurology, Hope Center for Neurological Diseases, Washington University School of Medicine, St. Louis, MO 63110, United States

Abstract
Lysosomal membrane permeabilization caused either via phagocytosis of particulates or the uptake of protein aggregates can trigger the activation of NLRP3 inflammasome- an intense inflammatory response that drives the release of the pro-inflammatory cytokine IL-1β by regulating the activity of CASPASE 1. The maintenance of lysosomal homeostasis and lysosomal membrane integrity is facilitated by the AAA+ ATPase, VCP/p97 (VCP). However, the relationship between VCP and NLRP3 inflammasome activity remains unexplored. Here, we demonstrate that the VCP inhibitors, DBeQ and ML240 elicit the activation of NLRP3 inflammasome in bone marrow-derived macrophages (BMDMs) when used as activation stimuli. Moreover, genetic inhibition of VCP or VCP chemical inhibition enhances lysosomal membrane damage and augments LLoME-associated NLRP3 inflammasome activation in BMDMs. Similarly, VCP inactivation also augments NLRP3 inflammasome activation mediated by aggregated alpha-synuclein fibrils and lysosomal damage. These data suggest that VCP is a participant in the complex regulation of NLRP3 inflammasome activation. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.

Author Keywords
Alpha-synuclein fibrils;  ASC speck;  Bone marrow-derived macrophages;  LLoMe;  NLRP3 inflammasome;  TAT-Cre recombinase;  VCP/p97

Document Type: Article
Publication Stage: Article in Press
Source: Scopus

APOE2 gene therapy reduces amyloid deposition and improves markers of neuroinflammation and neurodegeneration in a mouse model of Alzheimer disease” (2024) Molecular Therapy

APOE2 gene therapy reduces amyloid deposition and improves markers of neuroinflammation and neurodegeneration in a mouse model of Alzheimer disease
(2024) Molecular Therapy, . 

Jackson, R.J.a b , Keiser, M.S.c , Meltzer, J.C.a b , Fykstra, D.P.a b , Dierksmeier, S.E.a b e , Hajizadeh, S.f h i , Kreuzer, J.f g , Morris, R.f , Melloni, A.a , Nakajima, T.a b , Tecedor, L.c , Ranum, P.T.c , Carrell, E.c , Chen, Y.c , Nishtar, M.A.a b , Holtzman, D.M.j , Haas, W.f g , Davidson, B.L.c d , Hyman, B.T.a b

a Alzheimer Research Unit, Massachusetts General Hospital Institute for Neurodegenerative Disease, Charlestown, MA 02129, United States
b Department of Neurology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02114, United States
c Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, United States
d Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
e Medical Sciences Division, University of Oxford, Oxford, OX3 9DU, United Kingdom
f Krantz Family Center for Cancer Research, Massachusetts General Hospital, MA, Boston, 02114, United Kingdom
g Department of Medicine, Harvard Medical School, Boston, MA 02115, United States
h Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
i Institute of Molecular Biosciences, University of Graz, Graz, 8010, Austria
j Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO 63108, United States

Abstract
Epidemiological studies show that individuals who carry the relatively uncommon APOE ε2 allele rarely develop Alzheimer disease, and if they do, they have a later age of onset, milder clinical course, and less severe neuropathological findings than people without this allele. The contrast is especially stark when compared with the major genetic risk factor for Alzheimer disease, APOE ε4, which has an age of onset several decades earlier, a more aggressive clinical course and more severe neuropathological findings, especially in terms of the amount of amyloid deposition. Here, we demonstrate that brain exposure to APOE ε2 via a gene therapy approach, which bathes the entire cortical mantle in the gene product after transduction of the ependyma, reduces Aβ plaque deposition, neurodegenerative synaptic loss, and, remarkably, reduces microglial activation in an APP/PS1 mouse model despite continued expression of human APOE ε4. This result suggests a promising protective effect of exogenous APOE ε2 and reveals a cell nonautonomous effect of the protein on microglial activation, which we show is similar to plaque-associated microglia in the brain of Alzheimer disease patients who inherit APOE ε2. These data increase the potential that an APOE ε2 therapeutic could be effective in Alzheimer disease, even in individuals born with the risky ε4 allele. © 2024 The Authors

Author Keywords
AAV;  Alzheimer disease;  APOE;  APOE2;  gene therapy;  microglia;  neuroinflammation

Document Type: Article
Publication Stage: Article in Press
Source: Scopus

Use of a Blood Biomarker Test Improves Economic Utility in the Evaluation of Older Patients Presenting with Cognitive Impairment” (2024) Population Health Management

Use of a Blood Biomarker Test Improves Economic Utility in the Evaluation of Older Patients Presenting with Cognitive Impairment
(2024) Population Health Management, . 

Canestaro, W.J.a , Bateman, R.J.b , Holtzman, D.M.b , Monane, M.c , Braunstein, J.B.c

a Department of Management and Organization, Foster School of Business, University of Washington, Seattle, WA, United States
b Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
c C2N Diagnostics, LLC, St. Louis, MO, United States

Abstract
More than 16 million Americans living with cognitive impairment warrant a diagnostic evaluation to determine the cause of this disorder. The recent availability of disease-modifying therapies for Alzheimer’s disease (AD) is expected to significantly drive demand for such diagnostic testing. Accurate, accessible, and affordable methods are needed. Blood biomarkers (BBMs) offer advantages over usual care amyloid positron emission tomography (PET) and cerebrospinal fluid (CSF) biomarkers in these regards. This study used a budget impact model to assess the economic utility of the PrecivityAD® blood test, a clinically validated BBM test for the evaluation of brain amyloid, a pathological hallmark of AD. The model compared 2 scenarios: (1) baseline testing involving usual care practice, and (2) early use of a BBM test before usual care CSF and PET biomarker use. At a modest 40% adoption rate, the BBM test scenario had comparable sensitivity and specificity to the usual care scenario and showed net savings in the diagnostic work-up of $3.57 million or $0.30 per member per month in a 1 million member population, translating to over $1B when extrapolated to the US population as a whole and representing a 11.4% cost reduction. Savings were driven by reductions in the frequency and need for CSF and PET testing. Additionally, BBM testing was associated with a cost savings of $643 per AD case identified. Use of the PrecivityAD blood test in the clinical care pathway may prevent unnecessary testing, provide cost savings, and reduce the burden on both patients and health plans. © Joel B. Braunstein et al., 2024; Published by Mary Ann Liebert, Inc.

Author Keywords
Alzheimer’s disease;  blood biomarker;  budget impact model;  cost analysis;  diagnosis;  economic utility

Document Type: Article
Publication Stage: Article in Press
Source: Scopus

A precision functional atlas of personalized network topography and probabilities” (2024) Nature Neuroscience

A precision functional atlas of personalized network topography and probabilities
(2024) Nature Neuroscience, . 

Hermosillo, R.J.M.a b , Moore, L.A.a , Feczko, E.b , Miranda-Domínguez, Ó.a b , Pines, A.c d , Dworetsky, A.e f g , Conan, G.a h , Mooney, M.A.h i j k , Randolph, A.a b , Graham, A.h , Adeyemo, B.l , Earl, E.m , Perrone, A.a , Carrasco, C.M.a b , Uriarte-Lopez, J.h , Snider, K.h , Doyle, O.h , Cordova, M.n o , Koirala, S.a p , Grimsrud, G.J.a , Byington, N.a , Nelson, S.M.a b , Gratton, C.f g q , Petersen, S.e l q r s , Feldstein Ewing, S.W.t , Nagel, B.J.h , Dosenbach, N.U.F.l , Satterthwaite, T.D.d u , Fair, D.A.a b p

a Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, United States
b Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
c Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, United States
d Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, United States
e Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
f Department of Psychology, Northwestern University, Evanston, IL, United States
g Department of Psychology, Florida State University, Tallahassee, FL, United States
h Department of Psychiatry, Oregon Health & amp; Science University, Portland, OR, United States
i Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, United States
j Knight Cancer Institute, Oregon Health & amp; Science University, Portland, OR, United States
k Center for Mental Health Innovation, Oregon Health and Science University, Portland, OR, United States
l Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
m Data Science and Sharing Team, National Institute of Mental Health, Bethesda, MD, United States
n Joint Doctoral Program in Clinical Psychology, San Diego State University, San Diego, CA, United States
o Joint Doctoral Program in Clinical Psychology, University of California San Diego, San Diego, CA, United States
p Institute of Child Development, University of Minnesota, Minneapolis, MN, United States
q Department of Psychological and Brain Sciences, Washington University School of Medicine, St. Louis, MO, United States
r Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
s Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, United States
t Department of Psychology, University of Rhode Island, Kingston, RI, United States
u Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, United States

Abstract
Although the general location of functional neural networks is similar across individuals, there is vast person-to-person topographic variability. To capture this, we implemented precision brain mapping functional magnetic resonance imaging methods to establish an open-source, method-flexible set of precision functional network atlases—the Masonic Institute for the Developing Brain (MIDB) Precision Brain Atlas. This atlas is an evolving resource comprising 53,273 individual-specific network maps, from more than 9,900 individuals, across ages and cohorts, including the Adolescent Brain Cognitive Development study, the Developmental Human Connectome Project and others. We also generated probabilistic network maps across multiple ages and integration zones (using a new overlapping mapping technique, Overlapping MultiNetwork Imaging). Using regions of high network invariance improved the reproducibility of executive function statistical maps in brain-wide associations compared to group average-based parcellations. Finally, we provide a potential use case for probabilistic maps for targeted neuromodulation. The atlas is expandable to alternative datasets with an online interface encouraging the scientific community to explore and contribute to understanding the human brain function more precisely. © The Author(s) 2024.

Funding details
National Institute of Mental HealthNIMHU01DA041148, R37MH125829, U24DA055330, R01MH120482, R01MH096773, R01 MH115357, R01EB022573
National Institutes of HealthNIHU01DA041093, U01DA041048, U01DA041022, U01DA041117, U01DA041089, U01DA041028, U24DA041123, U01DA050989, U01DA050987, U01DA051016, U01DA051018, U24DA041147, U01DA051039, U01DA041120, U01DA041025, U01DA050988, U01DA041174, U01DA041134, U01DA051037, U01DA041106, U01DA041156, U01DA051038

Document Type: Article
Publication Stage: Article in Press
Source: Scopus